UMCS and HVAC Control Systems Criteria Update

Dave Schwenk

U.S. Army Corps of Engineers

ERDC-CERL

1-800-USA-CERL

David.M.Schwenk@erdc.usace.army.mil

UFC / UFGS Criteria Update

- Development and Review Team -

- Development (U.S. Army Corps of Engineers):
 - Headquarters U.S. Army Corps of Engineers (HQUSACE)
 - Engineer Research Development Center, Construction Engineering Research Laboratory (ERDC-CERL)
 - Huntsville Center Center of Expertise for UMCS
 - Savannah District Center of Expertise for HVAC Control
- Review and coordination:
 - Air Force and Navy
 - Army Districts & Installations: Fort Worth District, Fort Hood, Fort Sill, Louisville District, others
 - Vendors and System Integrators

Products

Update criteria documents:

UFGS-15951: DDC for HVAC & Building-Level Controls

UFGS-13801: Utility Monitoring & Control Systems

UFC 3-400-02: Utility Monitoring & Control Systems

UFC 3-410-02: DDC for HVAC & Building-Level Controls

Update existing PROSPECT courses:

Crs 340: HVAC Control Systems: Design

Crs 382: HVAC Control Systems: Quality Verification

Crs 246: HVAC Control Systems: O&M

UMCS and HVAC Control Systems - Problem -

- Increasing use of DDC in Army / Government
- Designers, construction QV, and O&M staff have difficulty dealing with multitude of options and complexities of DDC
- Design and spec criteria documents are out of date
 - 15951A is for stand-alone buildings
 - 13801A used for both building and UMCS, thus confusion with 15951A
 - Both specifications lead to closed, proprietary systems
- Government forced to attempt to integrate different closed and proprietary systems

UMCS and HVAC Control Systems - Problem -

- Sole source procurement is prohibited in government contracts
- Competitive procurement under the current specifications leads to multiple single-vendor systems
- These single-vendor systems are not open (interoperable/ extensible) and result in added cost to integrate them
- Specifications to procure multi-vendor systems that are nonproprietary and open are needed

UMCS and HVAC Control Systems - Definitions -

- Proprietary system: A system that requires sole-source procurement
- An open DDC system is characterized by the ability for any qualified entity to readily modify, operate, upgrade, and perform retrofits on the system. An open system:
 - Permits multiple devices from multiple vendors to readily exchange information
 - Provides the capability to easily replace any device with another device procured from multiple sources
 - May have components available from only one manufacturer, but represent a small percentage of the overall device
 - May have fees associated with the use of certain components, where the fees are established and consistent

Criteria Update - Goals -

- Develop specifications for non-proprietary and open systems that meet the Corps' DDC system requirements
- Minimize complexity for:
 - Design
 - Construction
 - O&M (in-house or contracted)
- Provide support to our customers/users
 - Technical and management
 - Contracting
 - Training
- KISS

Corps Specifications

'Old' SLDC Specs

- Lessons Learned -

- It was difficult for industry to accept the custom technology. The solution should be commercial 'off the shelf'.
- The concept while simple, was not simple enough. HVAC controls by their nature are complex and detailed. We need to maximize our support base.
- The SLDC control panels were not capable of cost-effectively interfacing with a supervisory system (such as a UMCS). The 15000 (building) and 13000 (UMCS) specifications must be written to work together.
- With the new criteria we are incorporating these lessons to the maximum extent possible

Note: SLDC = Single-Loop Digital Control

System Requirements

- Open/standard communications protocol
- Open network management/network database standard
- Simplify Operations and Maintenance
- Eliminate closed systems

These considerations are related, so the overall picture must be considered in deciding each

Open/Standard Communications Protocol

- Needed to permit/support competitive procurement
- ANSI-135 (BACnet®) and ANSI-709 (LonTalk®) are the primary open protocols available for building controls
- Industry consensus on choice of LonTalk / BACnet is impossible; both are functional/usable, with pros and cons

Open/Standard Communications Protocol

- USACE choice for current specs ANSI standard 709.1 (LonTalk)
 - There is an open network management/database standard designed to work with the protocol
 - Peer-to-peer communications helps eliminate the need for closed supervisory controllers
 - LonMark® certification process in place / operational
 - 100's of certified devices available
 - Protocol reference implementation is available
 - LonMark Interoperability Association vendor support
 - Advantage of high-speed IP (via ANSI/EIA 852)
 - Adoption & support by industries besides HVAC

R&D is ongoing - Continuing to monitor other technologies (BACnet, SOAP, XML, etc.)

Open Network Management/Database Standard

- Needed to permit/support competitive procurement
- Multiple network management/database standards are available
- Industry consensus on the choice of a network management/database standard is impossible
- Corps can only support one; the most nonproprietary, open, supported and available option

Open Network Management/Database Standard

- Corps choice for current specs: LonWorks[®] Network Services (LNS)
 - Provides open access to network
 - Permits non-proprietary expansion/modifications to network
 - Adopted by multiple vendors; license available to any vendor
 - LNS-capable tools available to 3rd parties (not limited to proprietary channels)
 - Adoption & support by industries besides HVAC
- R&D is ongoing Continuing to monitor other tools/approaches

Simple For Operation and Maintenance

- A single front-end
- Minimize required device/network configuration tools
- Multiple repair/replacement options (devices, vendors, contractors)
- Contracting and technical support

Eliminate Closes Systems

- Vendors often try to close the system to 'lock-in' the customer leading to proprietary procurement and/or costly system expansion
- Avoid devices/approaches that tend to close the system (ex: gateways, supervisory controllers)
- Avoid non-standard communications including those reserved for supervisory tasks (ex: scheduling) since they introduce closed aspects
- Where no standard approach exists, specifications provide a standard approach
- Permit gateways for legacy system interface only

UMCS/DDC Network Architecture

Considerations

- The technology is still growing
- Certified controllers tend to have limited functionality, so the specifications must/will accommodate other options
- Controller application programming / configuration often performed through closed tools
- Scheduling, Trending, Alarming, Energy / Load
 Management are non-standardized functions
- UMCS Monitoring & Control software may have some proprietary aspects

Criteria Update - Schedule -

- R&D Ongoing through 2004 (and beyond)
- UFGS / UFC

Final UFGS	(specs)	Fall 03
------------------------------	---------	---------

- Final UFC (design guidance)
 Fall 03
- Training coursesFall 03
 - Control System DesignOct 03
- Technical report2004

Criteria Update Summary

- Government philosophy: KISS
 - Our Inter-networking needs are not especially complex; need only basic functionality
 - Work with industry
 - Avoid bells and whistles
 - Make it easy to get working and keep it working
 - Keep it open (communications <u>and</u> our options)

